Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling
Shahnejat-Bushehri S., Tarkowska D., Sakuraba Y., Balazadeh S.
NATURE PLANTS 2: Article number: 16013, 2016
Klíčová slova: Brassinosteroid, Gibberellins, Plant stress responses
Abstrakt: Gibberellins (GAs) and brassinosteroids (BRs) are important phytohormones that control plant development and responses to environmental cues by involving DELLA proteins and BRASSINAZOLE-RESISTANT1 (BZR1) respectively as key transcription factors. Here, we reveal a new role for JUNGBRUNNEN1 (JUB1) as a transcriptional regulator of GA/BR signalling in Arabidopsis thaliana. JUB1 directly represses the hormone biosynthesis genes GA3ox1 and DWARF4 (DWF4), leading to reduced levels of GAs and BRs and typical GA/BR deficiency phenotypes exhibiting short hypocotyls, dwarfism, late flowering and male sterility. JUB1 also directly represses PHYTOCHROME INTERACTING FACTOR4 (PIF4), a transcription factor connecting hormonal and environmental stimuli. On the other hand, JUB1 activates the DELLA genes GA INSENSITIVE (GAI) and RGA-LIKE 1 (RGL1). In addition, BZR1 and PIF4 act as direct transcriptional repressors upstream of JUB1, establishing a negative feedback loop. Thus, JUB1 forms the core of a robust regulatory module that triggers DELLA accumulation, thereby restricting cell elongation while concomitantly enhancing stress tolerance.
DOI: Autoři z ÚEB: Danuše Tarkowská
NATURE PLANTS 2: Article number: 16013, 2016
Klíčová slova: Brassinosteroid, Gibberellins, Plant stress responses
Abstrakt: Gibberellins (GAs) and brassinosteroids (BRs) are important phytohormones that control plant development and responses to environmental cues by involving DELLA proteins and BRASSINAZOLE-RESISTANT1 (BZR1) respectively as key transcription factors. Here, we reveal a new role for JUNGBRUNNEN1 (JUB1) as a transcriptional regulator of GA/BR signalling in Arabidopsis thaliana. JUB1 directly represses the hormone biosynthesis genes GA3ox1 and DWARF4 (DWF4), leading to reduced levels of GAs and BRs and typical GA/BR deficiency phenotypes exhibiting short hypocotyls, dwarfism, late flowering and male sterility. JUB1 also directly represses PHYTOCHROME INTERACTING FACTOR4 (PIF4), a transcription factor connecting hormonal and environmental stimuli. On the other hand, JUB1 activates the DELLA genes GA INSENSITIVE (GAI) and RGA-LIKE 1 (RGL1). In addition, BZR1 and PIF4 act as direct transcriptional repressors upstream of JUB1, establishing a negative feedback loop. Thus, JUB1 forms the core of a robust regulatory module that triggers DELLA accumulation, thereby restricting cell elongation while concomitantly enhancing stress tolerance.
DOI: Autoři z ÚEB: Danuše Tarkowská