Exploiting repetitive sequences and BAC clones in Festuca pratensis karyotyping
Majka, J., Książczyk, T., Kieøbowicz-Matuk, A., Kopecký, D., Kosmala, A.
PLOS ONE 12: e0179043, 2017
Klíčová slova:
Abstrakt: The Festuca genus is thought to be the most numerous genus of the Poaceae family. One of the most agronomically important forage grasses, Festuca pratensis Huds. is treated as a model plant to study the molecular mechanisms associated with tolerance to winter stresses, including frost. However, the precise mapping of the genes governing stress tolerance in this species is difficult as its karyotype remains unrecognized. Only two F. pratensis chromosomes with 35S and 5S rDNA sequences can be easily identified, but its remaining chromosomes have not been distinguished to date. Here, two libraries derived from F. pratensis nuclear DNA with various contents of repetitive DNA sequences were used as sources of molecular probes for fluorescent in situ hybridisation (FISH), a BAC library and a library representing sequences most frequently present in the F. pratensis genome. Using FISH, six groups of DNA sequences were revealed in chromosomes on the basis of their signal position, including dispersed-like sequences, chromosome painting- like sequences, centromeric-like sequences, knob-like sequences, a group without hybridization signals, and single locus-like sequences. The last group was exploited to develop cytogenetic maps of diploid and tetraploid F. pratensis, which are presented here for the first time and provide a remarkable progress in karyotype characterization.
DOI: 10.1371/journal.pone.0179043
Fulltext: kontaktujte autory z ÚEB
Autoři z ÚEB: David Kopecky
PLOS ONE 12: e0179043, 2017
Klíčová slova:
Abstrakt: The Festuca genus is thought to be the most numerous genus of the Poaceae family. One of the most agronomically important forage grasses, Festuca pratensis Huds. is treated as a model plant to study the molecular mechanisms associated with tolerance to winter stresses, including frost. However, the precise mapping of the genes governing stress tolerance in this species is difficult as its karyotype remains unrecognized. Only two F. pratensis chromosomes with 35S and 5S rDNA sequences can be easily identified, but its remaining chromosomes have not been distinguished to date. Here, two libraries derived from F. pratensis nuclear DNA with various contents of repetitive DNA sequences were used as sources of molecular probes for fluorescent in situ hybridisation (FISH), a BAC library and a library representing sequences most frequently present in the F. pratensis genome. Using FISH, six groups of DNA sequences were revealed in chromosomes on the basis of their signal position, including dispersed-like sequences, chromosome painting- like sequences, centromeric-like sequences, knob-like sequences, a group without hybridization signals, and single locus-like sequences. The last group was exploited to develop cytogenetic maps of diploid and tetraploid F. pratensis, which are presented here for the first time and provide a remarkable progress in karyotype characterization.
DOI: 10.1371/journal.pone.0179043
Fulltext: kontaktujte autory z ÚEB
Autoři z ÚEB: David Kopecky