Effects of Inoculum Additions in the Presence of a Preestablished Arbuscular Mycorrhizal Fungal Community
Janoušková M., Krak K., Wagg C., Štorchová H., Caklová P., Vosatka M.
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 79: 6507-6515, 2013
Keywords: Glomus, arbuscular mycorrhiza, DNA quantification
Abstract: Communities of arbuscular mycorrhizal fungi (AMF) are crucial for promoting plant productivity in most terrestrial systems, including anthropogenically managed ecosystems. Application of AMF inocula has therefore become a widespread practice. It is, however, pertinent to understand the mechanisms that govern AMF community composition and their performance in order to design successful manipulations. Here we assess whether the composition and plant growth-promotional effects of a synthetic AMF community can be altered by inoculum additions of the isolates forming the community. This was determined by following the effects of three AMF isolates, each inoculated in two propagule densities into a preestablished AMF community. Fungal abundance in roots and plant growth were evaluated in three sequential harvests. We found a transient positive response in AMF abundance to the intraspecific inoculation only in the competitively weakest isolate. The other two isolates responded negatively to intra- and interspecific inoculations, and in some cases plant growth was also reduced. Our results suggest that increasing the AMF density may lead to increased competition among fungi and a trade-off with their ability to promote plant productivity. This is a key ecological aspect to consider when introducing AMF into soils.
DOI:
IEB authors: Helena Štorchová
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 79: 6507-6515, 2013
Keywords: Glomus, arbuscular mycorrhiza, DNA quantification
Abstract: Communities of arbuscular mycorrhizal fungi (AMF) are crucial for promoting plant productivity in most terrestrial systems, including anthropogenically managed ecosystems. Application of AMF inocula has therefore become a widespread practice. It is, however, pertinent to understand the mechanisms that govern AMF community composition and their performance in order to design successful manipulations. Here we assess whether the composition and plant growth-promotional effects of a synthetic AMF community can be altered by inoculum additions of the isolates forming the community. This was determined by following the effects of three AMF isolates, each inoculated in two propagule densities into a preestablished AMF community. Fungal abundance in roots and plant growth were evaluated in three sequential harvests. We found a transient positive response in AMF abundance to the intraspecific inoculation only in the competitively weakest isolate. The other two isolates responded negatively to intra- and interspecific inoculations, and in some cases plant growth was also reduced. Our results suggest that increasing the AMF density may lead to increased competition among fungi and a trade-off with their ability to promote plant productivity. This is a key ecological aspect to consider when introducing AMF into soils.
DOI: