Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips
Šimková, Hana; Číhalíková, Jarmila; Vrána, Jan; Lysák, Martin; Doležel, Jaroslav
BIOLOGIA PLANTARUM 46 [3]: 369-373, 2003
Keywords: banan; flow cytometry; nuclear DNA content
Abstract: Simple, fast and cost-effective method for preparation of DNA with high molecular weight (HMW DNA) from plant nuclei and mitotic chromosomes has been developed. The technique involves mechanical homogenization of formaldehyde-fixed root tips, purification of nuclei and/or chromosomes on sucrose gradient, embedding in low-melting-point agarose, and DNA isolation in agarose plugs. Alternatively, nuclei and chromosomes may be purified using flow cytometry. Majority of DNA obtained is megabase-sized and well digestible by restriction endonucleases. The method is highly efficient as microgram amounts of DNA can be obtained from only several milligrams of plant tissue. Handling negligible amounts of plant material reduces the consumption of chemicals. Furthermore, the use of root tips makes it possible to obtain high-quality DNA even from plant species with leaves that are rigid or rich in secondary metabolites such as polyphenols. It is expected that preparation of HMW DNA from root tip nuclei will facilitate long-range mapping and construction of large-insert DNA libraries also in these species. Successful isolation of HMW DNA from flow-sorted chromosomes opens a way for construction of chromosome-specific large-insert libraries in plants.
DOI:
IEB authors: Jaroslav Doležel, Hana Šimková
BIOLOGIA PLANTARUM 46 [3]: 369-373, 2003
Keywords: banan; flow cytometry; nuclear DNA content
Abstract: Simple, fast and cost-effective method for preparation of DNA with high molecular weight (HMW DNA) from plant nuclei and mitotic chromosomes has been developed. The technique involves mechanical homogenization of formaldehyde-fixed root tips, purification of nuclei and/or chromosomes on sucrose gradient, embedding in low-melting-point agarose, and DNA isolation in agarose plugs. Alternatively, nuclei and chromosomes may be purified using flow cytometry. Majority of DNA obtained is megabase-sized and well digestible by restriction endonucleases. The method is highly efficient as microgram amounts of DNA can be obtained from only several milligrams of plant tissue. Handling negligible amounts of plant material reduces the consumption of chemicals. Furthermore, the use of root tips makes it possible to obtain high-quality DNA even from plant species with leaves that are rigid or rich in secondary metabolites such as polyphenols. It is expected that preparation of HMW DNA from root tip nuclei will facilitate long-range mapping and construction of large-insert DNA libraries also in these species. Successful isolation of HMW DNA from flow-sorted chromosomes opens a way for construction of chromosome-specific large-insert libraries in plants.
DOI: